Rotational and vibrational cooling of H_3^+ in laboratory experiments

Holger Kreckel, Dirk Schwalm, Daniel Zajfman, Andreas Wolf
+ the TSR Group
Max-Planck-Institut für Kernphysik, Heidelberg, Germany

Jonathan Tennyson
Department of Physics and Astronomy
University College London, UK
Rotational and vibrational cooling of H_3^+ in laboratory experiments

Outline

- Motivation,
- TSR Experiments,
- Relaxation model,
 - Vibrational decay,
 - Longlived rotational states,
 - Radiative heating,
- Conclusions.
Motivation: the H_3^+ DR dilemma

Dissociative Recombination (DR)

$\text{H}_3^+ + e^- \rightarrow \{ \text{H}_2 + \text{H}, \text{H} + \text{H} + \text{H} \}$

[Graph showing DR rate coefficient over time with upper limits and storage rings highlighted]
The TSR storage ring

Ultra-high vacuum system

H$_3^+$ formation:

H$_2^+$ + H$_2$ → H$_3^+$ + H + 1.7eV!
H$_3^+$ vibrational excitation

- **Bending mode 1**
- **Breathing mode**
- **Bending mode 2**

Phase:
- +90°
- -90°
H$_3^+$ vibrational levels
Coulomb Explosion Imaging Technique (CEI)

$v = 0.03c$

target foil
(thickness $< 10^{-8}$ m)

Δt

3D imaging detector

5 m

8 cm
Coulomb explosion principle
CEI Setup: Slow extraction
Coulomb explosion results H_3^+

The diagram shows the distribution of vibrational levels $P(v_a)$ as a function of v_a (a.u.). The theoretical predictions for $(1,0^0)$, $(2,0^0)$, and $(0,0^0)$ are compared with experimental data for $T < 1\text{ms}$ and $T > 2\text{s}$. The data for $T > 2\text{s}$ is labeled as experimental data, while the data for $T < 1\text{ms}$ is not explicitly labeled but is included in the comparison.
Decay of the first breathing mode $(1,0^0)$ of H_3^+

exponential function
(breathing mode lifetime $T=1.18\,\text{s}$)
fitted to experiment
at $t > 500\,\text{ms}$
DR fragment imaging

three-body breakup

\[\text{H}_3^+ + e^- \rightarrow \text{H} + \text{H} + \text{H} \]

reveals substantial rotational excitation

\[T_{\text{rot}} \sim 2700 \text{K} \]

for storage times up to 60 s

D. Strasser et al., PRL 86, 779 (2001)

signature of excess energy up to 1 eV
The UCL line list for H_3^+

<table>
<thead>
<tr>
<th>J_i</th>
<th>E_i (cm$^{-1}$)</th>
<th>J_f</th>
<th>E_f (cm$^{-1}$)</th>
<th>v_{if} (cm$^{-1}$)</th>
<th>A_{if} (s$^{-1}$)</th>
<th>g_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5559.156</td>
<td>9</td>
<td>2702.08</td>
<td>2857.0759</td>
<td>0.1864E + 01</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>7425.172</td>
<td>8</td>
<td>4567.275</td>
<td>2857.8973</td>
<td>0.1001E - 01</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>6650.963</td>
<td>5</td>
<td>3793.033</td>
<td>2857.9299</td>
<td>0.2614E + 02</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>7592.384</td>
<td>11</td>
<td>4734.082</td>
<td>2858.3022</td>
<td>0.4208E - 06</td>
<td>8/3</td>
</tr>
<tr>
<td>5</td>
<td>6679.233</td>
<td>4</td>
<td>3820.803</td>
<td>2858.4294</td>
<td>0.7224E + 02</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>7074.147</td>
<td>10</td>
<td>4215.239</td>
<td>2858.9074</td>
<td>0.1016E - 06</td>
<td>8/3</td>
</tr>
<tr>
<td>7</td>
<td>6736.544</td>
<td>7</td>
<td>3877.035</td>
<td>2859.5084</td>
<td>0.1871E - 03</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>7494.607</td>
<td>12</td>
<td>4634.287</td>
<td>2860.3195</td>
<td>0.1253E - 04</td>
<td>8/3</td>
</tr>
<tr>
<td>7</td>
<td>7436.699</td>
<td>6</td>
<td>4575.975</td>
<td>2860.7237</td>
<td>0.3921E + 02</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>7703.346</td>
<td>1</td>
<td>4842.568</td>
<td>2860.7781</td>
<td>0.5750E - 02</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>7317.772</td>
<td>7</td>
<td>4456.901</td>
<td>2860.8705</td>
<td>0.2691E + 00</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>5257.293</td>
<td>9</td>
<td>2396.415</td>
<td>2860.8785</td>
<td>0.1084E - 01</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>7157.95</td>
<td>10</td>
<td>4296.621</td>
<td>2861.3287</td>
<td>0.2814E - 01</td>
<td>8/3</td>
</tr>
<tr>
<td>5</td>
<td>6529.265</td>
<td>4</td>
<td>3667.123</td>
<td>2862.1418</td>
<td>0.2532E + 02</td>
<td>2</td>
</tr>
</tbody>
</table>

Rovibrational relaxation model for H_3^+

Rovibrational relaxation model for H_3^+

- Initial temperature: 0.23eV (2700 K)
- Time points: $t=0\text{s}$, $t=0.1\text{s}$, $t=10\text{s}$, $t=60\text{s}$
- Diagram showing population changes over time for vibrations and rotations.
Decay of the first breathing mode \((1,0^0)\) of \(\text{H}_3^+\)

Exponential function (breathing mode lifetime \(T=1.18\text{ s}\)) fitted to experiment at \(t > 500\text{ ms}\)
Metastable rotational states (t=60 s)
Metastable rotational states (t=60 s)
ortho/para corrected

Population vs energy [eV]
Rotational levels

energy [cm$^{-1}$]

G quantum number

J - G
Selection rules

\(\Delta J = -1, 0, +1 \)
\(\Delta K = 2n + 1 \)
\(\Delta G = 3n \)

\(\Delta J = -1, 0, +1 \)
\(\Delta G = 3n, \; n \neq 0 \)
Radiative heating by 300 K blackbody radiation

initial distribution: 100 K Boltzmann
Conclusion H_3^+ DR:

2000

2005