Observation of the Infrared Saturation Spectrum of H₃⁺ v₂ Fundamental Band

Jow-Tsong Shy Department of Physics National Tsing Hua University Hsinchu 30013, TAIWAN

Spectroscopy of v_2 fundamental Band

First observation by Oka in 1980

258 lines with J up to 14 observed by

1. Laser spectroscopy with positive column of glow discharge

Laser: DF (difference frequency generation) source Lead-salt diode lasers CC (color center) laser

2. FTIR spectroscopy with hollow cathode discharge Absorption and emission spectrum

Doppler spectrum with accuracy is ~ 0.005 cm-1 (or 150 MHz)

Can one improve the accuracy?

New Developments ~ 2000

Optical frequency comb → improve wavelength accuracy

Periodically poled lithium niobate → improve laser power Precision Doppler Spectroscopy Using PPLN DF Laser and Optical Frequency Comb

K.Y. Wu, C.C. Liao, and Y.H. Lien National Tsing Hua University (Taiwan) **Optical Frequency Comb (OFC)**

a "frequency ruler" for measuring unknown frequency in optical region

Femtosecond Mode-locked TiSa laser (Giga Optics GigaJet 20) Repetition Rate= 1 GHz average power= 650 mW covers the spectrum: 500 ~ 1100 nm frequency accuracy : ~ 10⁻¹² level

The mid-IR PPLN DFG source

• Ti: Sapphire laser : >1.5 W at 780 ~ 870 nm

- Nd: YAG laser : ~1 W at 1064 nm
- Tunable over 2.92~4.77 μm
- ~ 1 mW at 3 μm

• f_1 measured by our OFC and f_2 measured by an iodinestabilized YAG laser

Experiment—concentration modulation

- H₂ pressure: 1.2 Torr
- methanol-cooled cell temperature : -25°C
- modulation frequency: 1.5 kHz

Doppler spectrum

fitting uncertainty of central frequency < 1 MHz
Doppler linewidth ~ 578 MHz (~ 300 K)
Sensitivity ~ 1×10⁻⁸ cm⁻¹Hz^{-1/2}

Frequency measurements

The transition frequency is determined by $f_0 = \frac{f_{ap} + f_p}{2}$

Results

transitions	<i>Our results (cm⁻¹)</i>	uncertainty	other groups (cm ⁻¹)	uncertainty
R(3,3) ^u	2918.02561(35)	10 MHz	2918.026(10) [1]	300 MHz
R(3,3) ^I	2829.92527(35)	10 MHz	2829.925(05) [2]	150 MHz
R(2,1) ^u	2826.11683(35)	10 MHz	2826.117(05) [2]	150 MHz
R(2,2) ^u	2823.13780(35)	10 MHz	2823.138(05) [2]	150 MHz
R(2,2) ^I	2726.06965(35)	10 MHz	2762.070(05) [2]	150 MHz
R(1,1) ^u	2726.22025(35)	10 MHz	2726.220(05) [2]	150 MHz
R(1,0)	2725.89816(35)	10 MHz	2725.898(05) [2]	150 MHz
R(1,1) ^I	2691.44305(35)	10 MHz	2691.443(05) [2]	150 MHz
Q(2,2)	2554.66586(70)	20 MHz	2554.666(05) [2]	150 MHz
Q(1,1)	2545.42036(70)	20 MHz	2545.420(05) [2]	150 MHz
Q(1,0)	2529.72464(35)	10 MHz	2529.724(05) [2]	150 MHz
Q(2,1) ^I	2518.21154(70)	20 MHz	2518.211(05) [2]	150 MHz

[1] T. Oka, Phil. Trans. R. Soc. Lond. A 303,545-549 (1981).

[2] A. R. W. McKellar and J. K. G. Watson, J. Mol. Spectrosc. 191, 215-217 (1998).

The uncertainty of previous results is ~ 0.001 cm⁻¹ (30 MHz)

Saturation spectrum of H_3^+

Direct-Current Glow Discharge

Extended Negative Glow Discharge

High ion concentration at low pressure.

Singly Resonant OPO

- Increasing the signal of the saturation spectroscopy of molecular ion.
- Idler Wavelength : $2.7 3.9 \mu m$
- Average Power : > **300 mW**

Experimental Setup

Absorption of R(1,0)

- B Field Modulation -- Concentration Modulation
- Doppler width (FWHM): 590 MHz (~ 300 K)
- Absorption: 0.036 %

Increase OPO Power

3rd Derivative Signal - Saturation Dip

- Frequency Modulation Method Idler wave
- Modulation Frequency : 31 kHz
- Modulation Depth : 28 MHz
- Laser Intensity : ~ 80 kW/m²

Fiber Optical Frequency Comb

- Repetition Rate : 250 MHz
- Supercontinuum : 1030 ~ 2200 nm
- Accuracy : $< 10^{-12} @ 1000 \text{ sec} (< 1 \text{ kHz in the MIR region})$

Frequency determination

1. Lock signal to comb, 2. Lock pump to line center, and 3. Measure pump frequency with frequency comb

Our Measurement: 2725. 897 732 2 (26) cm⁻¹ (81720 358 138 (78) kHz) **Previous Measurement:** 2725.898 (5) cm⁻¹

Agree very well, but much higher accuracy!

H₃⁺ R(3,0) @ 3.412 μm

Linewidth at 80 mW 42 mtorr

Pressure Broadened Linewidth (42 mtorr)

Pressure Broadening Coefficient

See our poster for the details.

Conclusions

- First observation of the saturation spectrum of H₃⁺ in an extended negative glow discharge using a PPLN OPO
- The absolute frequency of H₃⁺ R(1,0) transition has been determined to high accuracy (< 100 kHz).
- The power and pressure broadening of R(3,0) transition has been studied.

Future Works

- Improving the sensitivity of our spectroscopic system.
- Measuring other transitions of H₃⁺.
- Study other molecular ions: HeH⁺, H₃O⁺,...
- Calibrate the accuracy of velocity modulation spectroscopy

Acknowledgments

\$\$: NSC, MOE, and ITRI (Taiwan), NSERC (Canada)