Chicheley Hall, February 9, 2012

- The THz view into the Sky: Astrophysical Picture
- H_2D^+ / H_3^+ in Space and Laboratory
- $H_{3}^{+} + O_{2}$ Proton Transfer
- Preparing a single rotational state of H₃⁺

Life cycle of Stars

Understanding the Language of Interstellar Molecules

Molecules: Chemical Clocks

Deuterated Molecules in Interstellar Medium

Cosmic [D]/[H] ~ 1.5·10⁻⁵

Deuteriumreservoir $[HD]/[H_2] \sim 3.0 \cdot 10^{-5}$

Isotope Enrichment [AD]/[AH] ~ 0.1

B. Parise, A. Belloche, F. Du, R. Güsten and K. Menten A&A, 526, A31 (2011)

Primary Deuteration Reactions

Isotopic Fractionation Ideal Case – Laboratory Situation

Equilibrium

 $[H_2D^+]/[H_3^+] = S(T) [HD]/[H_2]$ $S(T) = k_f/k_b$

Experimental Method:

Electrodynamical Trapping

22-Pole Low Temperature Ion Trap

Trajectories of ions in 22-pole trap

Example: $H_2^+ + H_2 \rightarrow H_3^+ + H_3$

New Experimental Results & Modelling

Hugo et al., J.Chem.Phys. 2009, 130, 164302

Lowest energy levels of H₃⁺

p-H₃⁺ o-H₃⁺

Spectroscopic results for H₂D⁺

rotational level populations of H₂D⁺

COLTRAP: Future $H_3^+ / H_2 D^+$ Experiments

FELION: Spectroscopy Trap for FELIX

IS HO⁺₂ A DETECTABLE INTERSTELLAR MOLECULE?

SUSANNA L. WIDICUS WEAVER^{1,4}, DAVID E. WOON², BRANKO RUSCIC³, AND BENJAMIN J. MCCALL

$H_3^+ + O_2 \iff H_2 + O_2 H^+$

Tracer for O_2 ?

Chemistry of near thermoneutral Reaction

IS HO⁺₂ A DETECTABLE INTERSTELLAR MOLECULE?

Figure 1. Equilibrium structural parameters for HO_2^+ (RCCSD(T) at the valence complete basis set limit with core–valence corrections) and dipole moment components (MRCI/AV5Z).

Spectroscopic	HO_2	HO_2	HO_2^+
Constant	Calculated ^a	Experimental ^b	Calculated ^a
A ₀ (GHz)	615.997	610.2733	659.301
B_0 (GHz)	33.604	33.5178	38.344
C_0 (GHz)	31.643	31.6677	35.885
$v_1 ({\rm cm}^{-1})$	3457	3436.2	3028
$v_2 ({\rm cm}^{-1})$	1406	1391.8	1440
$v_3 ({\rm cm}^{-1})$	1128	1097.6	1068
Δ_N (MHz)	0.1127	0.116908	0.1075
Δ_{NK} (MHz)	3.303	3.44572	5.515
Δ_K (MHz)	115.02	123.5906	299.03
μ_a (D)	1.405	1.412	1.518
μ_b (D)	1.572	1.541	1.934
$D(cm^{-1})$			6.870
$E(cm^{-1})$			0.033
ϵ_{aa} (MHz)	-46730	-49572	-1182
ϵ_{bb} (MHz)	-432	-422.9	-481
ϵ_{cc} (MHz)	-159	8.748	-476

Molecular Parameters Determined for HO_2 and HO_2^+

T = 129 K

Arrhenius Plot

 $E_a/k = 113 + / -4 K$

Energetics of $H_3^+ + O_2$ Collision

Dieter Gerlich at 2011 COST Meeting

O₂ Rotational State Distribution

Dieter Gerlich at 2011 COST Meeting

Towards State Preparation: Collaboration with Dieter Gerlich

State Popoulation: Light Induced Reactions

Observation of the Infrared Spectrum of H_3^+

Takeshi Oka

Towards State Preparation: Collaboration with Dieter Gerlich

COLTRAP: Combined Molecular Beam & Trap

Towards State Preparation: Collaboration with Dieter Gerlich

Molecular Beam Testing

Towards State Preparation: Collaboration with Dieter Gerlich

A Chairman's Dream Experiment

p-H₃⁺ o-H₃⁺

H₃⁺ Dream Experiment

Step 2:

Inelastic Collisions e.g. with H₂ H₃⁺ Dream Experiment

Step 3:

Probe Level Population with LIR

$$H_3^+ + O_2 \longrightarrow H_2 + O_2 H^+$$

Chicheley Hall, February 9, 2012

- The THz view into the Sky: Astrophysical Picture
- H_2D^+ / H_3^+ in Space and Laboratory
- $H_{3}^{+} + O_{2}$ Proton Transfer
- Preparing a single rotational state of H₃⁺