Storage Ring Measurements of the Dissociative Recombination of H₃⁺

Holger Kreckel

Max-Planck-Institut für Kernphysik Max-Planck-Institut für Astronomie Chemistry Department, University of Illinois at Urbana-Champaign

Dissociative Recombination (DR) of Molecular Ions

$$H_3^+ + e^-$$

H + H + H $H_2 + H$

Importance of DR in the interstellar medium

McCall, 2001

"Perceived" H₃⁺ DR rate coefficient

Storage Ring DR Measurements

Advantages

- radiative relaxation (rotations, vibrations)
- direct measurement
- 100% detection efficiency
- high resolution

Problem

 H_3^+

Vibrations? Rotations?

H₃⁺: A Special Molecule

- no electronic excited states
- no permanent dipole moment
- very efficient formation:

 $H_2^+ + H_2 \rightarrow H_3^+ + H$ (+ 1.7eV)

First H₃⁺ Storage Ring Experiment

Coulomb Explosion Setup: Slow extraction

Coulomb Explosion Results

Kreckel et al., PRA 66, 052509 (2002)

DR Fragment Imaging

Dissociative Recombination

DR Imaging of the Kinetic Energy Release

DR Imaging of the three-body breakup

H₃⁺ Rovibrational Relaxation Model

H₃⁺ Rovibrational Relaxation Model

Rotationally "cold" Ion Sources

Cryogenic 22-pole ion trap

TSR Heidelberg

Gerlich, Physica Scripta T59, 256 (1995)

Expansion Source Results / CRYRING 2003

McCall et al., Nature 422, 500 (2003)

High Resolution DR Measurement at TSR

- 2.5 x 10^6 H₃⁺ ions inside the ion trap
- up to 40% transmission to the TSR
- helium buffer gas inside the trap (6 x 10¹⁴ cm⁻³)
- trap storage times ranging from 1-130 ms

H₃⁺ DR Spectrum High Resolution

What do we really see?

H₃⁺ DR Spectrum High Resolution

OUANTUM DYNAMICS

(C)

DR Imaging Results

The Holy Grail: State-Specific Measurements

The Case to Continue the Quest

Kreckel et. al, PRL 95, 263201 (2005)

Piezo Expansion Source

Cavity Ring Down Measurements at UIUC

Difference frequency generation: 3.67 μm

QUANTUM DYNAMICS

Nuclear Spin Manipulation

- 1:5 n-H₂ : Argon mixture
- 1:5 p-H₂ : Argon mixture

 $p-H_3^+$ fraction $p_3 = (47.9 \pm 2) \%$ $p-H_3^+$ fraction $p_3 = (70.8 \pm 2) \%$

Comparison to CRYRING 2003

Absolute Calibration through Lifetime Measurements

DR Imaging Results

DR Imaging Results

Nuclear Spin Dependence: H₃⁺ DR

Detailed rate coefficient comparison

DR Imaging Results

- H₃⁺ recombines efficiently with electrons
- good agreement between storage rings
- good agreement between storage rings and theory concerning the absolute scale
- vibrations cool fast, rotations don't
- coldest measurement on record: 380K
- para-H₃⁺ recombines faster than ortho-H₃⁺ at low energies

QUANTUM DYNAMICS

Perspectives

Supersonic expansion

Xavier Urbain / UC Louvain la Neuve

Perspectives

Collaboration / TSR DR Experiments

TSR Group Oldřich Novotny Annemieke Petrignani

Max H. Berg Dennis Bing Manfred Grieser Claude Krantz Michael Lestinsky Mario B. Mendes Christian Nordhorn Roland Repnow Julia Stützel Andreas Wolf

QUANTUM DYNAMICS

Kyle N. Crabtree
Brian A. Tom
Benjamin J. McCall

<u>Weizmann</u> Institute

Henrik Buhr

Funding:

National Science Foundation

Max-Planck Society

German-Israeli Foundation

European Comission

