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Why does Ef recombine faster in afterglows than in storage rings (theory)?

ANeutral assisted thre&ody recombination? Mechanism?
ACollisionatadiativerecombination?

Mresence of k?

What is the source of HD;)emissions in discharges/afterglows
Aabrowski& Herzberg: k recombination ( Coll. Rad. ?)
Aviderskian Gellene H+ el J4+H, (line broadening)

Asmano (Dplasmas): pH+elh S5+D, (some lines broadened, some not)

How does it all fit together?



A quick look at a few afterglow studies.

H,* ions recombine faster in afterglows than in storage rings, more so at low temperatur
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An important study that changed the histooy H,* recombination.
Amano: Afterglow of a hollow cathode discharge in purg{3x10° cm-3
Monitored decay of Ef(v=1) by optical absorption

Ik i [+
| —, - = e gUETECTOR
\ PRE- AN
A MODE CATHODE -y
g M STORAGE
SCOPE

PLOTTER

ﬁﬂ‘ | I
f-"-’-.“’ " SMAL COMPUTER
lj:T GENERATOR \ L PRINTER

FIG. 1. A schematic diagram of the spectrometer system.

The dissociative recombination rate coefficients of H}, HN;, and HCO™+
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TABLE 1. The dissociative recombination rate coefficients of H;" in the
ground vibrational state (in units of 10~7 cm®s™').
#

J K 110K 210K 273K
1,0 4.12)" 2.5(1) 1.72(5)
L1 4.1(1) 2.7(2) 1.77(10)
Y Ry 4.6(4) 24(2) 1.85(6)
3,3 4.5(5) 2.6(2) 1.91(7)
4,4 2.2(2) 1.9(4)

The dissociative recombination rate coefficients of H, HN;, and HCO*

T. Amano
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(Received 24 August 1989; accepted 23 February 1990)

Note: High initial g= 5x10* cm®

1. The H*ions should have converted ta,;Hwhich recombines 20 times faster!)

2. Collisionaradiativerecombination (CRR) should have been a big effect



First problem
At 77 K the reaction:

H; +H,+H,—>H;+H,

Is fast!
LGQa AYODBSNAS
Ho +H, >H;+H,+H
IS slow

Something must have broken ug*?
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Tentative answer: H.*is a weakly bound ion.
Binding energy ~ 0.3&5V

The plasma containedbrationallyexcited H

H: +H,(vib) > H; + H,+ H,

The reaction

H;+H,+H, < H.+H,

equilibrates, but at a temperature higher than the kinetic temperature

The recombination coefficient for the mixture

Ao = fa(Hg) + To(H;)
f,+ 1. =1

IS much higher!
f-==4% would double the rate!



Second problem
CRR should have had a big effect. Why did it not?
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Qo = 3.8x 10°T. **n_+1.55x 10°T_°®+ 6¢ 10°T; 2*h %% cm &
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correction term

collisions radiation

At low T,and highn,, the first term dominates.

Looks very simple!
But the electron temperature is not really an independent, known variable!

(Bates, Byron et al pointed this out long time ago)

* J.Stevefelt J.Boulmer, and J.Delpech Phys. Rev. 22, 1246 (1975)
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CRR heats the electron gas
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Here: n~ 8, corresponding to ~ 13.6/ 64 ~&\2



Electron heating and cooling in CRR recombination.

U= internal energy of the electron gas Energy released per

recombined ion

Heat input from CRR Uerp _ 5 g, 10°T %% n3SE [eVs' cm]
Heattransfer to ions dUdet_.on __3.2¢10° 22— T, )v,/zé kT—— KT )
A =23-In[nY?(kT,)**] (Coulomblogarithm
Heattransfer to neutrals % =N, T 2 (3 KT,—— k Ton)

as

f . =e— gas collision frequency

coll

In Steady state : heat input:heat loss NRL PLASMA FORMULARY
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The electrons must cool before they can recombine!
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Conclusion 1:

ARecombination in a lokemperature (~100 K) pure,fterglow (n> ~1G%occurs
mainly by CRR and*iecombination.
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Arhe H emission and absorption spectra most like arise from CRR gnd H

This largely agrees with the conclusion drawn from spectroscopic observations.
Two quotes from Amano and Chan (2000)*

The next question is how the line shapes and their rotational dependence aeunderstood We assume that Ps supplied to each
state through two distinct paths:

a direct supply from the dissociative recombinatioDgfanda cascade fronthe upperstates The molecules cascaded down from the
upper states have lessnetic energyresulting in smaller Doppler widths.

But they had some doubts:

We found thatno substantiaincrease of the absorption intensity was achieved at liquid nitrdgemperature. Ifthe formation process
is the dissociative recombination of'Da much moreconspicuous temperature dependence is likely to show up.

* Amang T. and Chan, M. (2000) Infrared absorption spectroscopy gfdh investigation into the formation mechanism of
triatomic hydrogenicspeciesPhil. Trans. R. Sdond A358 2457-2470



Afterglows in mixtures of H&r, and H

Very extensive data from the Prague group

Recombination is enhanced by helium.

¢KS O0AYIl NE

A

NEO2YGAYI

PHYSICAL REVIEW A 79, 052707 (2009)

Temperature dependence of binary and ternary recombination of H,* ions with electrons
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Why not extrapolate to [F =07?

Not OK
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The H* formation becomesate-limiting!

OK

Ar'+ HI N H andArH+ HIH NJ' (10° cnm?/s) will take ~L0 msecat [H,] = 161 cnr3

Recombination of an ion with= 107 cm?/s (at n,= 10° cm3) takes time 1/ n)=1 msec
(It would work ifo. actuallywere much smaller but does not rule out 107 cmd/s )



[H,] must be high enough to produce

much faster than it is lost by recombination.

Otherwise, His not the dominant ions

Ar"+H,—> ArH" +H
ArH"+H, > Ar+H;

Production:

Loss:
H; +e — products
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Conclusion 2

1. There is good evidence for the dependendél;*) on[He]

2. But not for a dependence of(H;")* on [H,] below 102 cnr3”

Notes:
A Possible loophole: Jpara/ortho ratio depends on [}, and para and ortho
recombine with different rates (not likely at 300 K)

** This does not exclude a possible dependence(tt;*) on[H,] at higher densities



How do we explain the dependence on [He]?
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Neutral-stabilized electron-ion recombination in ambient helium gas

Y. 8. Cao and R. Johnsen
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Thirdbody- assisted recombination mechanisms

3-body capture

autoionization

Binary capture Lowl

Collisional ionization

PN

|-mixing

*

continuum KT
........................... ‘ ® 0 0 00

bound N

~-4 kT

Rydberg statesl

Third-body effects can enhance recombination only if they stabilize states
that can still be raonized. (by collisions @utoionizatior)

At low temperatures, low n states cannot be ionized and their
stabilization by third bodies is not effective



Quantitative model of collisional dissociative recombination wathxing:
High Rydbergs (n>12) are formed very fast by tHredy capture:

e +H, + Mo H(nl)+ M

Their concentration is estimated from the Saha equilibrium

[H(n)]

_ _ 273 E/kT h:h2/2 k1/2
R K(n)=n"A. € Ay = (W (27 m,KT)

Irreversible destruction of these states enhances the recombination rate coefficient by

Ao = nix K(n)v.(n)

min

Irreversible destruction involves:

A-mixing, either by electrons or atoms, into lowstates that predissociate
AChemical reactions with neutral molecules (H2)



l-mixing rates

Ko =Vddxzamcn/ §

By electrons:

Dutta, S.K., Feldbaum, D., W&lannigan, A., Guest, J.R. and Raithel, G. 2001 -"High
angularmomentum states in cold Rydberg gasd®tysical Review Lettersl. 86, no.
18, pp. 39933996.

By helium: Konix e = 3-1x 105— cn? / g

Hickman, A.P. 1978, "Theory of angular momentum mixing in Ry@engrare-gas
collisions" Physical Review &ol. 18, no. 4, pp. 1339342.

Note:
The rates are fokmixing from a givehto any othert Q ®
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Model vs.data

[He] 107 cm?

Observed dependence of the;Hecombination coefficient at T=300 K on the
experimental helium density. Squares and triangles; data from Glosik (2009). Cross:

from Leu at al, 1973. The line indicates the density dependence expected from the
model described in the text



Model of Glosik @ D KaBkSufire >

rotational capture

Hy+e 2 H*(p 0

| —mixing

Hy*(R 1) + He— H*() )+ He

H,*(l, n) — stabilized??



He-assisted Model o6losik ® D KBk ufire >

Rotational capture of an electron into n>40 , followedlHogixing with helium,

and eventual stabilization

para-H;, N'K' = (1,1) para-H;, N'K’ = (2,2)
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FIG. 8: Diagonal elements @Q;; of matrix @ for the three low-
est (rotational) incident channels for the e~ + H3 collisions.
The rotational channels are (N7, K*) = (11), (10), and (22).
Each maximum in );; corresponds to an autolonization reso-
nance. The lifetime of a resonances is given by );;/4 eval-
uated at the maximum if there is only one channel open,

Qi = Q.
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FIG. 9. (Color online) Calculated thermally-averaged three-
body rate coefficient (K*P). The rate coefficients calculated sepa-
rately for ortho- and para-H* are very different. If the recombining
plasma is not in thermal equilibrium with respect to ortho to para
ratio, the averaged rate coefficient (dashed) could be very different
from the one shown.



Comments on th&slosiket al Heassisted model

AThe assumetimixing rates for high n (>40) are too large

AStates with n>40 are iBahaequlibrium, no furtherl-mixing is needed

It may work for rotational capture into lower Rydberg states

But: It can contribute only if these resonan@is not dissociateas assumed

However, if they actually do dissociate, that should leave a trace in the starapdata.
{ 2% t SiQa 221



Low energy peaks in storagmg data

Reduced DR rate coefficient (1 0 cm35'1e\.!"2]
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A. Petrignaniet al , PHYSICAL REVIEW
A 83, 032711 (2011)

(E" or E') symmetry:

lonization thresholds relevant to a p-wave electron
v with the Hi" ion in different initial ionic
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Lowenergy structure
of the storagering data

Lifetime graph for
rotational resonances
[blue for parak+ (1,1) to (2,1)]
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There seems to be a correlation between the peaks and valleys

para<H;.N'K'=(1,1) para-H ,NK =(2,2)
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