AN INFRARED SPECTROSCOPIC SEARCH FOR THE MOLECULAR ION H$_3^+$

T. R. GEBALLE
Joint Astronomy Center, Hilo, Hawaii; and Netherland Foundation for Fundamental Research in Astronomy

AND

T. OKA
Department of Chemistry and Department of Astronomy and Astrophysics, The University of Chicago
Received 1988 October 24; accepted 1988 December 15

ABSTRACT
A search for infrared vibration-rotation lines of H$_3^+$ at 4 μm toward five obscured infrared objects has produced upper limits corresponding to H$_3^+$ column densities of 4×10^{14} $\sim 10^{15}$ cm$^{-2}$.

Subject headings: interstellar: abundances — interstellar: molecules — line identifications

I. INTRODUCTION
The molecular ion H$_3^+$ is thought to play a fundamental role in the chemistry of the interstellar medium (Herbst and Klempner 1973; Watson 1973, 1976; Dalgarno and Black 1976; Suzuki 1979). It is a well-bound molecular system with a large energy of formation (H$_2$ + p \rightarrow H$_3^+$ + 4.35 eV) and exists abundantly ($\sim 10^{11}$ cm$^{-3}$) in hydrogen discharges in the laboratory. In space, it is produced in large amounts in dense molecular clouds through cosmic-ray ionization of molecular hydrogen followed by the 1.7 eV exothermic ion-molecule reaction

$$H_2 + H_2^+ \rightarrow H_3^+ + H$$

which has a large Langevin cross section of several hundred \AA^2. The H$_3^+$ ion thus produced is expected to play the crucial role of protonator in the interstellar medium through the proton hopping reaction

$$X + H_2^+ \rightarrow HX^+ + H_2$$

This reaction is exothermic and very efficient for most neutral atoms and molecules X of astrophysical interest with the notable exceptions, X = He, N, Ne, and O$_2$ (for which proton affinities are 1.9 eV, 3.4 eV, 2.1 eV, and 4.3 eV, respectively). The H$_3^+$ ion thus initiates a chain of reactions which lead to a variety of complex molecules which have been observed in interstellar space (Huntress 1977; Smith 1988).

Because of its structural symmetry (equilateral triangle), H$_3^+$ does not possess a permanent dipole moment and hence no rotational spectrum is expected except for the very weak forbidden rotational transitions recently discussed by Pan and Oka (1986). A possible detection of a submillimeter wave emission of its deuterated species H$_3^+$D$^+$ has been reported by Phillips et al. (1985). In order to detect H$_3^+$ directly in the interstellar medium, the most promising method is to use the v_3 vibration-rotation fundamental band which appears at 4 μm (Oka 1980, 1981). In this paper we report on such an attempt in the last few years. Most of the molecular properties and numerical data of H$_3^+$ used in this paper may be found in Oka's review on H$_3^+$ (1983).

II. VARIOUS ESTIMATES
The v_3-fundamental band of H$_3^+$ has a relatively large vibrational transition dipole moment of 0.157 debye theoretically calculated by Carney and Porter (1974, 1976); the observed intensities of spectral lines in the laboratory are consistent with this value. The standard intensity formula (Pugh and Rao 1976) gives the peak absorption as

$$\alpha = \frac{\Delta I}{I} = 1.45 \times 10^{-15} N(H_3^+) f_{JK}(T) \frac{A_{JK}}{\Delta v}$$

where \(N(H_3^+)\) is the column density of H$_3^+$ in cm$^{-2}$, \(f_{JK}(T)\) is the temperature-dependent fraction of molecules in the lower rotational level of the transition, and Δv is the width at half-maximum of the observed spectral line in km s$^{-1}$. A_{JK} is the H"onl-London factor for a perpendicular ($\Delta K = \pm 1$) transition which is one-fourth of the expression given in Herzberg's book (1945). The numerical factor 1.45 $\times 10^{-15}$ results from the expression $(8\pi^3 \mu^2 / 3hc)(\ln 2/\pi)^{1/2}$.

Because of the large rotational constants ($B = 43.56$ cm$^{-1}$, $C = 20.61$ cm$^{-1}$) of H$_3^+$, most of the H$_3^+$ molecules in dense molecular clouds populate the lowest ortho-level $J = 1, K = 0$ or the lowest para-level $J = 1, K = 1$ (note that the lowest $J = K = 0$ state is forbidden by the Pauli principle). The $J = 1, K = 1$ level (with a spin statistical weight of 1) is lower than the $J = 1, K = 0$ level (with a weight of 2) by 22.846 cm$^{-1}$ (~ 33 K) (Watson et al. 1984) and has a higher population for $T < 48$ K. Unlike ortho- and para-H$_2$, the ortho- and para-H$_3^+$ equilibrate rapidly by proton hopping reactions (Oka 1981).

Out of the six vibration-rotation transitions starting from these two lowest levels, we chose the following two for our search:

$$Q(1, 0); \quad v = 1, J = 1, K = 1, I = 1 \leftrightarrow v = 0, J = 1, K = 0$$

at 2529.724 cm$^{-1}$ and

$$P(1, 1); \quad v = 1, J = 0, K = 0, I = -1 \leftrightarrow v = 0, J = 1, K = 1$$

at 2457.290 cm$^{-1}$.

The H"onl-London factor for these transitions are $\frac{1}{2}$ and $\frac{1}{2}$, respectively. The $Q(1, 0)$ transition is the strongest observed in the laboratory. The other strongest line $R(1, 0)$ at 2925.898 was not used because of interference by atmospheric absorption lines predicted by Traub and Stier (1976). The $Q(1, 0)$ transition is 0.2810 cm$^{-1}$ below the weak P(35) $2v_3 - 0$ (telluric) transition of N$_2$O. The $P(1, 1)$ transition is the weakest of the four possible transitions starting from the $J = 1,$
III. OBSERVATIONS

High-resolution spectral searches for the vibration-rotation \(\text{H}_3^+ \) lines have been made toward five obscured infrared sources. All of the spectra were obtained at the United Kingdom Infrared Telescope on Mauna Kea. The instruments used were scanning Fabry-Perot interferometers in series with a liquid and solid nitrogen-cooled grating spectrometer. The Fabry-Perot interferometers, which were used at ambient temperature, have resolutions of 9 and 18 km s\(^{-1}\) (determined from measurements of low pressure lines of CO and N\(_2\)). Blocking filters and gratings (the latter with rulings of 383 and 303 grooves mm\(^{-1}\)) were used to reject unwanted Fabry-Perot orders. Standard chopping and nodding practices were employed. The detector viewed a circular field of 5° diameter. An observing log is given in Table 1.

Four of the infrared sources, GL 2591, LkH\(_2\) 101, BN, and NGC 2024/IRS 2 were observed at 9 km s\(^{-1}\) resolution, in steps of 3.2 km s\(^{-1}\), on 1985 October 12, in 90 km s\(^{-1}\) wide intervals centered on the \(^2\Pi(1,0) \) line at 2529.724 cm\(^{-1}\) (3.953 \text{ \mu m}). The lower level of this transition \((J, K) = (1, 0) \) will be well populated at temperatures of many tens of degrees which are thought to be the case in the molecular clouds surrounding the above sources. One of the above sources, NGC 2024/IRS 2, shows an absorption at 4.675 \text{ \mu m} due to solid CO (Geballe 1986), indicating at least some carbon depletion in the interstellar gas. A fifth source, W33 IR, was observed in a 90 km s\(^{-1}\) wide interval centered on the \(^2\Pi(1, 1) \) line at 2457.290 cm\(^{-1}\) (4.070 \text{ \mu m}). A substantial fraction of the cloud surrounding this object is believed to be at temperatures in the range 20-40 K (Goldsmith and Mao 1983). For such a low temperature, the \(J = 1, K = 1 \) level is more populated than the \(J = 1, K = 0 \) as discussed earlier. Infrared spectra of W33 IR show very strong absorption of solid CO and other probable carbon-bearing molecules suggesting high depletion of gaseous CO (Geballe et al. 1985). A Fabry-Perot interferometer of resolution 18 km s\(^{-1}\) was used to search for the \(\text{H}_3^+ \) line in W33 IR, because the source was too faint to detect easily at higher resolution. The spectrum was sampled in 5 km s\(^{-1}\) steps.

Wavelength calibrations were made by observing a reference gas cell containing N\(_2\)O, which has several vibration-rotation bands in the 4 \text{ \mu m} region. The atmospheric transmission, which is flat apart from N\(_2\)O lines and the broad tail of the 4.3 m CO\(_2\) band, was determined from measurements of a standard star or the Moon.

IV. RESULTS

The final spectra, in which the telluric absorption lines are removed, are shown in Figures 1 and 2. These spectra have been smoothed by a three-point triangle function, resulting in displayed resolutions of 10 and 19 km s\(^{-1}\). The spectra are

Table 1

<table>
<thead>
<tr>
<th>Source Name</th>
<th>Date (UT)</th>
<th>(\text{H}_3^+) Line</th>
<th>Resolution (km s(^{-1}))</th>
<th>Integration Time (s point(^{-1}))</th>
<th>Calibration Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL 2591</td>
<td>1985 Oct 12</td>
<td>(^2\Pi(1, 0))</td>
<td>9</td>
<td>120</td>
<td>BS 2479</td>
</tr>
<tr>
<td>LkH(_2) 101</td>
<td>1985 Oct 12</td>
<td>(^2\Pi(1, 0))</td>
<td>9</td>
<td>56</td>
<td>BS 2479</td>
</tr>
<tr>
<td>BN</td>
<td>1985 Oct 12</td>
<td>(^2\Pi(1, 0))</td>
<td>9</td>
<td>104</td>
<td>BS 2479</td>
</tr>
<tr>
<td>NGC 2024/IRS 2</td>
<td>1985 Oct 12</td>
<td>(^2\Pi(1, 0))</td>
<td>9</td>
<td>160</td>
<td>BS 2479</td>
</tr>
<tr>
<td>W33 IR</td>
<td>1987 Jul 6</td>
<td>(^2\Pi(1, 1))</td>
<td>18</td>
<td>1332</td>
<td>Moon</td>
</tr>
</tbody>
</table>
essentially flat to within the error bars. In these figures arrows denote the velocities at which the peak of H$_3^+$ lines are expected; the velocity for LkHa 101 is from Dewdney and Roger (1982), that of GL 2591 is from Bally and Lada (1983) and Geballe and Wade (1985), and that for W33 IR from Goldsmith and Mao (1983).

None of our observational results represents a detection of H$_3^+$. The 2σ upper limits are listed in Table 2 first as equivalent widths of unresolved lines observed at the instrumental resolution, and second as column densities. Equations and constants from § II have been used to derive the column densities. As the derived column densities are dependent on the cloud temperature, the upper limits are given for various assumed temperatures of 3 K, 10 K, 30 K, 100 K, and 300 K. The upper limits for the 'Q(1, 0) line have minima at intermediate temperature reflecting the fact that at a very low temperature most of the molecules populate the (1, 1) level while at a high temperature higher J levels.

V. DISCUSSION

The H$_3^+$ molecular ion is perhaps the most important molecular species yet to be detected in interstellar space in order to confirm and further develop the currently accepted ion-molecule reaction scheme of interstellar chemistry. The upper limits listed in Table 2 can be viewed in various ways in relation to other astronomical observations and conjectures.

a) OMC-1 BN Source

The present work provides the first reliable upper limit for the column density of H$_3^+$ in front of the BN source. The earlier value (Oka 1981) was not accurate because of the poor weather conditions and the incorrect Hön-London factor (a factor of 4 mentioned earlier in this paper). The present upper limit of $3 \sim 4 \times 10^{14}$ is much less than the column densities of abundant neutral molecules such as H$_2$, CO, H$_2$O, CH$_3$OH, NH$_3$, SO, SO$_2$, HCN, OH, H$_2$CO, OCS, SiO, (CH$_3$)$_2$O, HCOOCH$_3$, CN, etc., which range from 2×10^{23} cm$^{-2}$ to

![Graph](image-url)
2 × 10^{15} \, \text{cm}^{-2} \) (Rydebeck and Hjalmarson 1985; Guélin 1985). Most of these molecules are produced by chemical reactions initiated by H$_3^+$ (Huntress 1977; Dalgarno 1985; Smith 1988) but H$_3^+$ itself does not have a high steady-state concentration because of its high reactivity with neutral molecules through equation (2).

The observed upper limit of H$_3^+$ is smaller, but comparable to the observed column density of the most abundant molecular ion HCO$^+$ which has been reported to be 2 × 1015 cm$^{-2}$ (plateau) and 3 × 1014 cm$^{-2}$ (ridge) by Rydebeck et al. (1981) and listed as 1 × 1015 cm$^{-2}$ by Guélin (1985). The predicted ratio of H$_3^+$ to HCO$^+$ ranges from ~7 × 10$^{-2}$ (Herbst and Klemperer 1973) to ~1 (de Jong, Dalgarno, and Boland 1980) in depleted dense clouds. The millimeter observations of HCO$^+$ cover a wide region of, and sample the entire line of sight through, Orion A, while the infrared observations cover only the narrow line of sight to BN. Were the densities of ion species considerably higher than average in the vicinity of BN, H$_3^+$ might have been detected; however, the observations demonstrate that this is not sufficiently true.

The column density of CO in front of BN has been determined by Scoville et al. (1983) to be 1.3 × 1019 cm$^{-2}$. Assuming that C/ H = 1 × 10$^{-4}$ in the gas, this corresponds to N(H$_2$) = 7 × 1022 cm$^{-2}$. Then the upper limits of the ratios H$_3^+$/CO and H$_3^+$/H_2 are ~3 × 10$^{-5}$ and 5 × 10$^{-6}$, respectively. This upper limit to H$_3^+$/H$_2$ is compared with some recent calculations in Table 3. The upper limit is similar to some of the predictions and therefore may constrain some chemical models of the Orion molecular cloud. We note that the H$_3^+$/H$_2$ ratio estimated from the possible observation of H$_2$D$^+$ emission in NGC 2264 by Phillips et al. (1985) based on a thermal model is comparable to the present upper limit, although their estimate is critically dependent on the assumed temperature. In view of the fast exchange reaction between H$_2$D$^+$ and H$_2$ the ortho-para conversion of H$_3^+$ must be rapid in a molecular cloud.

Table 2

<table>
<thead>
<tr>
<th>SOURCE NAME</th>
<th>H$_3^+$ LINE</th>
<th>W$_0$ (cm$^{-1}$)</th>
<th>2 × UPPER LIMITS</th>
<th>N(H$_3^+$)(1014 cm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL 2591</td>
<td>'Q(1, 0)</td>
<td>0.0020</td>
<td>...</td>
<td>22, 3.8, 3.3, 14</td>
</tr>
<tr>
<td>LkHα 101</td>
<td>'Q(1, 0)</td>
<td>0.0015</td>
<td>17</td>
<td>2.9, 2.5, 10</td>
</tr>
<tr>
<td>BN</td>
<td>'Q(1, 0)</td>
<td>0.0020</td>
<td>22, 3.8, 3.3, 14</td>
<td></td>
</tr>
<tr>
<td>NGC 2044/IRS 2</td>
<td>'Q(1, 0)</td>
<td>0.0030</td>
<td>...</td>
<td>33, 5.8, 4.9, 21</td>
</tr>
<tr>
<td>W33 IR</td>
<td>'P(1, 1)</td>
<td>0.0070</td>
<td>14, 22, 23, 43, 240</td>
<td></td>
</tr>
</tbody>
</table>

Since H$_3^+$ is a crucial agent for formation of many molecules, its abundance can be gauged by the abundance of some product neutral species. Thus Lepp, Dalgarno, and Sternberg (1987) recently predicted that [H$_3^+$] = 0.1[OH] for a cold dark cloud. Using the column density of OH in Orion A of 1 × 1016 cm$^{-2}$ (Guélin 1985) the calculated [H$_3^+$] is 1 × 1015 cm$^{-2}$ which is negated by the present upper limit of 3 ~ 4 × 1014 cm$^{-2}$ albeit by a small margin. Such a comparison, however, may not be very meaningful because the microwave emission signal may well be contributed by molecules behind the infrared star.

b) Other Sources

In addition to BN, line-of-sight measurements of CO column densities have been made in three of the objects we searched for H$_3^+$. Black and Willner (1984) found a CO column density of ~1 × 1015 cm$^{-2}$ toward NGC 2044/IRS 2. Upper limits to H$_3^+$/CO and H$_3^+$/H_2 in front of this object are probably a factor of 2 higher (and less significant) than toward BN. The column density of CO in front of GL 2591 is ~2 × 1015 (G. F. Mitchell, private communication); however, because much of this CO is warm (G. F. Mitchell, private communication; Geballe and Wade 1985), the upper limit to H$_3^+$ (and hence H$_3^+$/H$_2$) is also probably less significant than toward Orion. Recently, Mitchell, Allen, and Maillard (1988) have measured the column density of cold (23 K) CO to be ~1.3 × 1019 cm$^{-2}$ toward W33 IR and the total CO column density to be ~2.7 × 1019 cm$^{-2}$. The significance of our (rather large) H$_3^+$ upper limit toward this object is difficult to judge, because of the possibility that C is severely depleted in the cold gas in front of this object. The visual extinction toward LkHα 101 is only ~10 mag (McGregor, Persson, and Cohen 1984); hence, the upper limit to N(H$_3^+$) here is less significant than toward BN.

Table 3

<table>
<thead>
<tr>
<th>Model</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langer and Graedel 1989</td>
<td>1 × 10$^{-7}$ – 3 × 10$^{-9}$</td>
</tr>
<tr>
<td>Herbst and Leung 1986</td>
<td>1.6 × 10$^{-9}$, 1.8 × 10$^{-9}$</td>
</tr>
<tr>
<td>Brown and Rice 1986</td>
<td>6.3 × 10$^{-9}$</td>
</tr>
<tr>
<td>Watt 1985</td>
<td>5 × 10$^{-11}$, 1.3 × 10$^{-10}$</td>
</tr>
<tr>
<td>Leung, Herbst, and Huebner 1985</td>
<td>3.0 × 10$^{-11}$, 1.3 × 10$^{-9}$</td>
</tr>
<tr>
<td>Millar and Freeman 1984a, b</td>
<td>5.3 × 10$^{-10}$</td>
</tr>
<tr>
<td>Graedel, Langer, and Frerking 1982</td>
<td>5.2 × 10$^{-10}$, 4.7 × 10$^{-10}$</td>
</tr>
<tr>
<td>Prasad and Huntress 1980</td>
<td>1.1 × 10$^{-9}$, 9 × 10$^{-11}$</td>
</tr>
<tr>
<td>Phillips et al. 1985</td>
<td>2.3 × 10$^{-9}$</td>
</tr>
</tbody>
</table>

VI. CONCLUSION

Although the sensitivities of current high-resolution infrared spectrometers apparently are insufficient to detect H$_3^+$ directly in interstellar space, present-day instruments probably are very close to detection. An increase in sensitivity by an order of magnitude, which should occur within the next few years, is likely to lead to the discovery of interstellar H$_3^+$.

Note added in manuscript (1989 March 3).—The overtones band 2v$_2$ → 0 emission spectrum of H$_3^+$ has now been identified in Jupiter’s southern polar hot spot (Maillard and Crossart 1989; J. K. G. Watson, private communication).

We thank the staff of UKIRT for its assistance with these observations. T. O. is supported by NSF grant PHY 87-07025.
IR SPECTROSCOPIC SEARCH FOR MOLECULAR ION H₃⁺

REFERENCES

T. R. Geballe: Joint Astronomy Centre, 665 Komohana Street, Hilo, HI 96720

T. Oka: Department of Astronomy and Astrophysics and Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637

© American Astronomical Society • Provided by the NASA Astrophysics Data System